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ARTICLE INFO ABSTRACT

JEL classification: This paper examines spillover dynamics, hedging effectiveness, and portfolio optimisation
E42 across tourism, cryptocurrency, and Fintech markets within a time-varying connectedness
Gl11

framework that incorporates traditional financial markets. We document pronounced time-

GI5 varying spillovers, peaking during the COVID-19 pandemic, with traditional finance emerging
(23;’2 as the dominant shock transmitter and the tourism sector as a key net receiver. Transmission-

channel evidence suggests that total connectedness increases with credit stress and is positively
Ilfi?'::g}rldS: correlated with market uncertainty and tourism mobility, with these effects intensifying during
Cryptocurrency the COVID-19 pandemic. Cryptocurrencies offer the least costly but weakest hedges, wl.1ile
Blockchain tourism assets hedge crypto exposure more effectively, albeit with greater downside risk.
Tourism Dynamic portfolio weight strategies outperform hedge-ratio strategies, and the minimum con-
Bitcoin nectedness portfolio (MCoP) delivers the highest risk-adjusted returns. Diebold-Mariano tests
Portfolio optimisation indicate no significant differences in return predictability, whereas Jobson-Korkie results show

that minimum correlation portfolio (MCP) and MCoP significantly outperform the minimum-
variance portfolio (MVP). Downside risk measures highlight the superior performance of MCoP
at the cost of deeper drawdowns. These findings underscore the value of connectedness-based
strategies for portfolio design in increasingly integrated markets.

1. Introduction and background

In the past decade, the tourism, financial technology (Fintech), and cryptocurrency sectors have undergone transformative
changes, redefining their roles in global economic systems. Tourism, once primarily viewed as a leisure-driven industry, has
evolved into a multifaceted domain that drives cultural exchange, international relations, and regional economic development.
The global tourism industry has expanded its economic footprint, creating employment opportunities and fostering economic
resilience in both developed and developing economies. Similarly, Fintech innovations have disrupted traditional financial services,
leveraging technological advancements to improve efficiency, accessibility, and inclusivity across banking, payments, and investment
platforms. The rapid proliferation of digital payment systems, peer-to-peer lending platforms, and decentralised finance (DeFi)
solutions underscores Fintech’s transformative impact. However, perhaps no innovation has generated as much disruption and
debate as cryptocurrencies. Introduced through Bitcoin and Ethereum, cryptocurrencies have emerged as both financial instruments
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and technological paradigms, challenging conventional currency systems and reshaping perceptions of value, trust, and financial
governance. Cryptocurrencies operate on decentralised blockchain infrastructures, enabling transparent, immutable, and efficient
transactions while raising critical questions about regulation, security, and economic implications.

Despite their distinct historical trajectories, tourism, Fintech, and cryptocurrencies are increasingly interconnected. The rationale
for examining their convergence is rooted in three key factors. First, globalisation and digitalisation have significantly altered
consumer preferences and behaviours across these sectors. Modern tourists demand seamless digital experiences, including the ability
to book accommodations with cryptocurrencies or leverage blockchain technology for secure and transparent travel arrangements.
Leading companies in the tourism industry, such as Norwegian Air, CheapAir, and Webjet, now accept payments in Bitcoin and
Ethereum, reflecting a broader shift toward digital currencies as a medium of exchange (Reed, 2024). These developments highlight
the role of cryptocurrencies as potential substitutes for traditional payment systems like VISA and Mastercard, which have historically
dominated the market (Cross et al., 2021). Second, Fintech solutions are becoming increasingly integrated into tourism services,
offering personalised financial management tools, dynamic pricing algorithms, and real-time payment systems that enhance the
travel experience. These integrations illustrate how Fintech can drive innovation within the tourism ecosystem, bridging operational
efficiency and consumer satisfaction.

Third, the financial landscape underpinning tourism has experienced a paradigm shift due to the adoption of cryptocurrencies.
Beyond their utility as payment instruments, cryptocurrencies offer novel investment opportunities within the tourism industry.
Tokenisation, for instance, has enabled fractional ownership of hospitality assets, democratising access to investment opportunities
that were traditionally confined to institutional players. Companies such as Travala and Destinia have pioneered the use of tokens in
loyalty programs, enabling customers to accumulate rewards that can be redeemed across a broad network of travel services. These
developments underscore the potential of cryptocurrency to redefine financial relationships within the tourism industry, providing
both consumers and businesses with flexible, secure, and innovative solutions.

The COVID-19 pandemic has further accelerated digital adoption across tourism and financial services, underscoring the
relevance of examining these interconnected markets. During the pandemic, lockdown measures and social distancing protocols led
to a dramatic surge in e-commerce, contactless payments, and decentralised financial solutions. Cryptocurrencies gained prominence
during this period as resilient payment alternatives, enabling secure and borderless transactions in a time of economic uncertainty.
Moreover, blockchain technology was explored for various pandemic-related applications, including vaccine distribution logistics
and health record management. As economies transition into post-pandemic recovery, the synergies between tourism, Fintech, and
cryptocurrencies are poised to play an even more significant role in shaping global commerce and leisure activities.

Our study makes three key contributions to this emerging discourse. First, we address a significant gap in the literature by
exploring the connectedness between cryptocurrency growth and the tourism industry. While existing studies have largely focused
on the broader applications of blockchain technology, there remains limited research examining the role of cryptocurrencies as
financial instruments within tourism. Blockchain technology, often regarded as the underlying infrastructure of cryptocurrencies,
has been widely studied for its potential to enhance transparency, efficiency, and trust in tourism transactions (Onder et al., 2018).
However, the specific role of cryptocurrencies in payment facilitation, loyalty programs, and infrastructure investment remains
underexplored. This study aims to bridge that gap by analysing the connectedness between these markets and highlighting the
implications for tourists, tourism companies, and investors.

Second, we employ a Time-Varying Parameter Vector Autoregression (TVP-VAR) model, as developed by Antonakakis, Cufiado,
et al. (2020a), to examine spillovers among these markets. The approach has two advantages. First, it captures dynamic relationships
across normal and extreme market conditions, such as the COVID-19 pandemic, providing robust estimates of market connectedness.
Second, unlike traditional techniques like Cholesky decomposition, the TVP-VAR model generates forecast-error variance decompo-
sitions that are invariant to variable ordering, ensuring greater methodological reliability. By applying this advanced econometric
framework, we provide nuanced insights into the temporal heterogeneity of spillovers between tourism, Fintech, and cryptocurrency
markets.

Third, we extend the analysis by conducting a portfolio evaluation of the assets examined in this study. This analysis provides
actionable insights for investors and portfolio managers, enabling them to devise strategies that leverage the diversification and
hedging properties of these interconnected markets. Notably, while previous studies, such as Manahov and Li (2024), have examined
the spillover effects between mainstream cryptocurrencies and tourism-specific tokens, our study takes a broader perspective.
By incorporating tourism exchange-traded funds (ETFs) alongside cryptocurrencies like Bitcoin and Ethereum, we offer a more
comprehensive analysis of market connectedness.

Overall, this study fills a critical void in the literature by jointly examining the dynamic connectedness among tourism, Fintech,
and cryptocurrency markets—three sectors that have been largely analysed in isolation. Unlike previous studies that explore bilateral
linkages (e.g., Fintech-Finance or Tourism—-Crypto), this paper develops a unified framework capturing tri-sectoral interdependencies
under varying market conditions. By integrating a time-varying parameter VAR model with portfolio optimisation techniques, the
study advances understanding of how digital and real sectors co-move, particularly during systemic shocks such as the COVID-
19 pandemic. This approach contributes both methodologically — by applying an order-invariant spillover framework — and
practically—by informing optimal diversification strategies in digitally integrated markets.

Foreshadowing the main results, we find that cross-market spillovers are heterogeneous over time, with the highest spillover
being observed during the COVID-19 pandemic. The results show that, compared to Fintech and cryptocurrency, the traditional
financial market still plays a dominant role in spillover transmission to the tourism sector. Our analysis further reveals that dynamic
bilateral portfolio weight strategies consistently outperform dynamic hedge ratio strategies, with cryptocurrency assets driving
superior portfolio returns. The minimum connectedness portfolio strategy, grounded in our framework, outperforms traditional
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minimum variance and correlation portfolio strategies, underscoring its relevance for optimising risk-adjusted returns in dynamic
markets.

The remaining structure of this paper is as follows: Section 2 provides a brief literature review of the interconnectedness between
the markets. Section 3 shows a description of the data and specification of our empirical model. Section 4 provides the methods
used in this study, Section 5 provides the empirical results, and Section 6 concludes.

2. Fintech, blockchain and tourism: A brief review

Given the limited studies on the interconnectedness between the Fintech, Crypto and Tourism sectors, the study reviews
literature on Fintech & Tourism, Cryptocurrency & Fintech and Cryptocurrency & Tourism. We summarise how the three sectors are
interrelated and the gap we aim to fill in this paper. In this paper, we use connectedness and spillovers interchangeably (Diebold &
Yilmaz, 2012).

2.1. Fintech and tourism

The interplay between financial technology (Fintech) and the tourism sector has garnered increasing academic attention in recent
years. Several studies explored how technological advancements in financial services influence tourism dynamics.

Mombeuil and Uhde (2021) investigate the relative convenience, perceived security, and advantage of mobile payments in the
tourism industry. Their findings reveal that tourists prefer mobile payment solutions for their convenience, leading to enhanced
user satisfaction and loyalty. Ma and Ouyang (2023) also analyses the spatiotemporal heterogeneity of digital inclusive finance
on tourism economic development in China. Using panel data, the study finds that digital financial inclusion significantly boosts
tourism revenue, especially in underdeveloped regions, by enhancing accessibility and reducing financial transaction costs. Lyu
(2024) studies the impact of China’s cross-border e-commerce pilot zones on urban residents’ tourism consumption. The research
highlights that the integration of e-commerce platforms with tourism services increases tourism spending, driven by improved digital
payment mechanisms and service accessibility.

Xuan Luan et al. (2023) investigate cashless payments and access to credit for community-based tourism businesses in Vietnam.
The study underscores the transformative impact of Fintech in enabling small tourism enterprises to expand their financial
capabilities and operational efficiency. Kim et al. (2022) explore digital currency and payment innovations within the hospitality and
tourism sectors. The study concludes that Fintech advancements facilitate seamless transactions, enhance customer satisfaction, and
create opportunities for innovative service delivery. Shariffuddin et al. (2023) analyse the affordances of online travel sites in the
tourism industry. Their findings suggest that digital payment systems and integrated Fintech solutions improve user experience and
drive customer retention. Ratna et al. (2024) provide a comprehensive review of blockchain and Fintech applications in the tourism
and hospitality industries. The study highlights the role of Fintech in fostering financial resilience, particularly during economic
disruptions like the COVID-19 pandemic.

Critical analysis of these studies reveals a significant gap in the literature: while Fintech’s role in facilitating payments and
improving financial inclusion in tourism is well-documented, few studies explore its long-term implications for cross-sectoral
connectedness, particularly for the interests of tourists, tourism companies and investors. This study fills this gap by empirically
examining the interplay between Fintech, tourism, and cryptocurrency markets using measures that capture both the investment
performance and spillovers among these sectors.

2.2. Blockchain’s role in tourism and fintech

Blockchain technology is widely recognised for its ability to transform operational processes in tourism and Fintech. The key
features of blockchain, including transparency, security, efficiency, and smart contract functionality, have been extensively discussed
in academic and industry contexts. In the tourism sector, blockchain enables the creation of decentralised platforms that eliminate
intermediaries such as online travel agencies (OTAs).

For instance, blockchain-based platforms like Winding Tree, now defunct, allow travellers to book accommodations and services
directly from providers, enhancing cost efficiency and trust. Blockchain also facilitates new business models, including developing
immutable review systems, secure payment processing, and tokenised loyalty programs that enhance customer satisfaction. Gursoy
et al. (2022) in a conceptual paper explores the application of non-fungible tokens (NFTs) in creating virtual goods and collectibles
for the hospitality and tourism industry. Their study proposes a framework for enhancing customer experiences in the metaverse.
However, it lacks empirical validation, particularly regarding the relationship between NFTs and customer experience in practical
contexts. Treiblmaier (2021) also investigates the potential uses of digital tokens within the tourism industry, focusing on their role in
enhancing customer value and interaction. The study identifies innovative applications of blockchain technology but remains largely
theoretical. Empirical studies are needed to substantiate the claims and provide actionable insights for hotel managers. Boukis (2024)
therefore examines the impact of tokenised rewards, enabled by blockchain technology, on the attractiveness and effectiveness of
customer loyalty programs in the hospitality industry. The study found that tokenised rewards enhance perceived economic value,
program attractiveness, and behavioural intentions, especially for luxury hotels and cryptocurrency-savvy customers, through the
mediating roles of reward novelty and psychological ownership. The results suggest that tokenised rewards are more effective than
traditional discounts, particularly for high-end brands aiming to differentiate their loyalty offerings.

While these studies focus on building new technologies for the tourism sector on blockchain infrastructure, our study focuses on
examining empirically the spillovers of the widespread adoption of cryptocurrencies to the tourism industry. Therefore, we proceed
to briefly review some empirical studies on how cryptocurrencies affect the tourism industry.
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2.3. Cryptocurrency and tourism

The integration of cryptocurrencies in the tourism industry has emerged as a significant development, reshaping traditional
payment systems. Cryptocurrencies such as Bitcoin and Ethereum have facilitated new transaction mechanisms that reduce the
dependence on traditional intermediaries, enabling faster and more cost-effective cross-border payments. This is particularly
beneficial in the tourism sector, where travellers frequently face challenges related to currency exchange fees, credit card fraud,
and fluctuating exchange rates. Researchers have explored various facets of this emerging trend.

Manahov and Li (2024) provide empirical evidence of the spillover effects between cryptocurrency markets and tourism tokens,
indicating a statistically significant influence of cryptocurrency heists and market shocks on tourism-related digital assets. This
interconnectedness suggests that developments in crypto directly affect investor sentiment and operational liquidity in tourism
businesses. The use of stablecoins in tourism further mitigates volatility risks. Stablecoins pegged to stable assets such as fiat
currencies or commodities offer a reliable alternative for travel-related payments, reducing price fluctuations and enhancing
transaction security.

Radic et al. (2022) investigate the adoption of cryptocurrency payments in South Korea and China’s tourism sectors. The study
finds that cryptocurrencies enable faster, more transparent transactions but also highlight regulatory and security challenges. Luo
et al. (2024) examine consumer experiences with travel websites accepting cryptocurrency payments. They find that cryptocurrency
integration enhances user satisfaction by offering alternative payment options, especially for international travellers. Kim et al.
(2022) discuss the broader implications of digital currency adoption in tourism and hospitality. Their findings reveal that
cryptocurrencies facilitate seamless cross-border transactions but require robust regulatory frameworks to ensure stability. Luo et al.
(2024) touches on cryptocurrency’s role in e-commerce-driven tourism consumption. The study emphasises that blockchain-enabled
payment solutions reduce transaction costs and increase consumer trust.

Meanwhile, in Fintech, blockchain drives innovation in digital payment systems by offering faster, more transparent, and secure
transaction solutions. Yousaf and Goodell (2023) explores how cryptocurrency price and policy uncertainties affect digital payment
stocks, revealing complex interdependencies between these markets. Their findings suggest that blockchain-based fintech solutions
can hedge against uncertainties in cryptocurrency markets, while traditional digital payment giants like VISA and Mastercard remain
relatively resilient. However, challenges such as regulatory uncertainty, security risks, and integration costs remain barriers to the
widespread adoption of blockchain in both sectors.

2.4. COVID-19 and sectoral spillovers

The COVID-19 pandemic served as a stress test for global financial and tourism systems, revealing both vulnerabilities and
opportunities for innovation. The pandemic caused a significant contraction in tourism and fintech sectors, with disruptions to
travel demand, liquidity crises, and heightened market volatility. During this period, most governments implemented lockdown
rules, which also caused a sharp decline in tourism around the world (Hampton et al., 2023; Ren et al., 2024). Due to these rules,
economic activities were generally slow, causing central banks to implement aggressive monetary easing while governments pursued
expansive fiscal policies to counter the economic effects of COVID-19. However, the pandemic also accelerated the adoption of
digital payment systems and blockchain technologies as businesses adapted to new operational realities. Businesses sought secure,
decentralised solutions to manage payments and loyalty programs in a contactless environment. Corbet et al. (2022) examine the role
of government support programs in stabilising tourism markets during the pandemic. Their findings indicate that fiscal interventions,
such as relief packages and loan facilities, alleviated investor fears and stabilised stock prices in the tourism sector.

In the fintech sector, the pandemic underscored the importance of resilience against systemic shocks. Yousaf and Goodell
(2023) reveal that digital payment stocks acted as a hedge against uncertainties in cryptocurrency markets during the pandemic,
highlighting the interconnectedness of these markets. The accelerated adoption of stablecoins in tourism further highlights the
sector’s response to pandemic-induced disruptions, offering secure, cost-effective alternatives to traditional payment systems.

The reviewed literature collectively indicates growing intersections among digital finance, tourism, and crypto-economies, yet
no unified empirical model has captured their joint evolution. Existing studies provide fragmented evidence — Fintech improving
transaction efficiency in tourism, blockchain enhancing trust, and cryptocurrencies enabling payment diversification — but overlook
systemic linkages and risk transmission. By modelling these sectors within a time-varying connectedness framework, this paper
extends the literature to an integrated quantification of cross-sector spillovers and portfolio implications. By addressing these gaps in
the existing literature, this study provides a comprehensive understanding of the interconnectedness between these sectors, offering
valuable insights for investors, policymakers, and stakeholders.

3. Data description and sources

We obtain daily data from Refinitiv Datastream covering 10th November 2017 to 5th July 2024. The start of the period is
chosen because all series have available data starting from that day. The data collected are prices of twelve Exchange-Traded Funds
(ETFs) from 3 key sectors — Fintech, Tourism and the traditional financial sector — and prices of Bitcoin, Ethereum and Binance Coin
(BNB). ETFs are investment vehicles that trade on stock exchanges, similar to individual stocks, but represent a basket of assets
such as stocks, bonds, commodities, or other securities. They are structured to track the performance of specific indices, sectors, or
asset classes. In this study, ETFs are relevant as they capture broad markets. These are described below with the variable names in
brackets.
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Fintech ETFs typically consist of companies that provide innovative financial services or develop financial technologies, such as
digital payments and financial software. Examples include ETFs focusing on digital payment giants like Visa, PayPal, and Square.
For Fintech ETFs, we use the following:

Global X Fintech ETF (GLOBALX ETF): This ETF seeks to invest in companies on the leading edge of the emerging financial
technology sector, which encompasses a range of innovations helping to transform established industries like insurance, investing,
fundraising, and third-party lending through unique mobile and digital solutions.

Amplify Digital Payments ETF (AMPLIFY ETF): The Index tracks the performance of common stocks (or corresponding American
Depositary Receipts (“ADRs”) or Global Depositary Receipts (“GDRs”)) of Mobile Payments Companies.

Invesco KBW NASDAQ Fintech UCITS ETF (INVESCO_FINTECH_ETF): The Fund’s investment objective is to replicate the net total
return performance of the KBW NASDAQ Financial Technology Index (the “Reference Index”), adjusted for fees, expenses, and
transaction costs. The Reference Index reflects the performance of financial technology companies listed on the NASDAQ Stock
Market, the New York Stock Exchange, or NYSE MKT.

Tourism-focused ETFs invest in companies directly involved in travel, hospitality, and leisure industries, such as airlines, hotel
chains, and online travel agencies. Examples include funds that track indices of tourism-related stocks or focus on geographically
diverse travel companies. These include:

(i) US Global Jets ETF (US_.GLOBALJETS_ETF) provides investors access to the global airline industry, including airline operators
and manufacturers worldwide. The Index consists of exchange-listed common stocks or depositary receipts of US and international
companies involved in passenger airlines, aircraft manufacturing, airports, terminal services, and airline-related internet media and
services, as identified by independent industry classifications (collectively referred to as “Airline Companies™)

(ii) iShares DJSXX.600 Travel & Leisure (ISHARES TRVL ETF): This Fund seeks to track the performance of STOXX Europe 600
Travel & Leisure index, composed of companies from the European Travel & Leisure sector.

(iii) Invesco Leisure and Entertainment ETF (INVESCO ETF): The Invesco Leisure and Entertainment ETF (Fund) is based on the
Dynamic Leisure & Entertainment Intellidex Index (Index). The Index is comprised of common stocks of leisure and entertainment
companies. These are companies that are principally engaged in the design, production or distribution of goods or services in the
leisure and entertainment industries.

Given the dominant role of the traditional financial sector, we also include ETFs that track the traditional financial sector to
control these companies’ role in the interconnectedness between Fintech, Crypto and Tourism. We include the Top 3.! Hence, we
use ETFs that capture the financial sector, including banks, insurance companies, capital markets, and investment banks, among
others, to capture the broader financial sector. These include:

(i) Financial Select Sector SPDR Fund (FINANCIAL_SELECT FUND). This ETF aims to match the performance of the Financial Select
Sector Index. This Index provides exposure to companies across multiple financial sectors, including financial services, insurance,
banks, capital markets, mortgage real estate investment trusts, and consumer finance.

(ii) 110 iShares US Broker-Dealers & Securities Exchange ETF (ISHARES_US_ETF). The ETF seeks to track the investment results of
an index composed of US equities in the investment services sector with exposure to US investment banks, discount brokerages, and
stock exchanges.

(iii) SPDR S&P Capital Markets ETF(SPDR _ETF): The ETF provides exposure to the capital markets segment of the S&P Total Market
Index, including sub-industries such as Asset Management & Custody Banks, Diversified Capital Markets, Financial Exchanges & Data,
and Investment Banking & Brokerage.

For data on cryptocurrency, we use Bitcoin, the world’s largest cryptocurrency according to its market CAP. We also include two
alternative coins, namely Ethereum, the second largest coin, and BNB, the native coin for Binance and the largest cryptocurrency
trading exchange. While Bitcoin is designed as a decentralised digital currency and store of value, Ethereum functions as a platform
for decentralised applications (DApps) and smart contracts. Binance Coin primarily facilitates transactions and services within the
Binance exchange ecosystem, which is the largest crypto exchange in the world.

By using all these data series, we can capture the diverse markets of the Fintech, Crypto, Tourism as well as the traditional
financial sectors. We calculate the log returns of all the series following: Return = In(R,) — In(R,_,). Fig. 1 shows the time series plot
of the returns. The Figure shows quite a similar trend over the period, with observable spikes during 2020 when COVID-19 was
declared a pandemic.

The summary statistics of the series are shown in Table 1. From the table, BNB has the highest mean return of 0.3% but also has
the highest variance. BTC and ETH have the same mean return of 0.1% even though ETH had a higher risk (variance) than BTC.
The Fintech and traditional financial sector ETFs recorded mean returns ranging from 0.01% to 0.04%. However, all the traditional
financial sector ETFs had similar risks, while the Fintech ETFs generally had higher risks. The tourism ETFs recorded the lowest
mean returns/loss. This ranged from a mean loss of —0.006% to a mean return of 0.005%. Meanwhile, taking the first log-difference
of the raw series results in a stationary series as shown by the Elliott et al. (1992) unit root test. However, the Jarque and Bera (1980)
test rejects the null of normally distributed data. Hence, the use of the TVP-VAR approach, which captures a dynamic (time-varying)
variance—covariance structure, is suitable for the nature of the time series.

1 Selection of the ETFs was influenced by these articles that identify some of the top performing ETFs in Fintech, Tourism and Financials https:
//www.nasdaq.com/articles/adventure-awaits:-ride-the-tourism-wave-with-these-etfs
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Fig. 1. Time series trend of first log-difference of variables.
Table 1
Summary statistics.
Variable Mean Variance Skewness Kurtosis JB ERS
GLOBALX _ETF 0.0001 0.0005 —0.454%*** 4.975%** 1849.601*** —17.995%**
AMPLIFY_ETF 0.0002 0.0003 —0.668*** g 7061.635*
INVESCO_FINTECH_ETF 0.0004 0.0002 —-0.15 2721.859*
BTC 0.001 0.002 —0.786*** 10.615%** 8329.794*** —4.494%**
ETH 0.001 0.003 —0.671%** 9.357%** 6463.045%** —5.827%***
BNB 0.003 0.004 0.282%** 13.712%** 13623.009*** —4.502%**
FINANCIAL_SELECT_FUND 0.0003 0.0002 —0.629%** 15.461*** 17404.479%** —16.314***
ISHARES_US ETF 0.0004 0.0002 —0.759%** 14.357*** 15076.726*** —17.360%**
SPDR_ETF 0.0004 0.0002 —0.556* 7.172 3809.886* —-17.501
US_GLOBALJETS_ETF —0.0002 0.001 —0.542%** 14.464*** 15217.599%** —16.200%**
ISHARES_TRVL_ETF —0.00006 0.0003 —0.508%*** 7.902%** 4590.763*** —17.569%**
INVESCO_ETF 0.00005 0.0003 —0.913%** 18.307*** 24482.481%*** —17.314%**

Note: *** Significance at 1%. ** Significance at 5%, Skewness: D’Agostino (1970) test; Kurtosis: Anscombe and Glynn (1983) test; JB
normality test; ERS: (Elliott et al., 1992) unit-root test. All other variables are as defined earlier.

4. Empirical methods

: (Jarque & Bera, 1980)

In this section, we discuss the various estimation techniques used in the paper. Our main technique is the time-varying parameter
VAR which is used to estimate the spillovers. We then discuss the methods used in the portfolio and hedging strategies.

4.1. Time-varying parameter vector autoregression

As we mentioned earlier, in this study, we use the terms “connectedness” and “spillovers” interchangeably (Diebold & Yilmaz,
2012). To estimate spillovers among Fintech, cryptocurrency and tourism sectors, we use a TVP-VAR model with heteroscedastic
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variance—covariances” as used by Antonakakis, Chatziantoniou, and Gabauer (2020b), Antonakakis, Cufiado, et al. (2020a). This
approach extends the works of Diebold and Yilmaz (2009, 2012, 2014) by applying a TVP-VAR with a time-varying covariance
structure, rather than the constant-parameter rolling-window VAR approach. In this approach, variances can vary over time via a
Kalman Filter estimation, which relies on decay factors. Based upon the Bayesian information criterion (BIC) and the Hannan-Quinn
information criterion (HQ), a TVP-VAR(1) model is selected, which can be mathematically formulated as:

Y =By, +¢ €~ N(@O0,%) @

vec(B;) =vec(B,_;) +v, v, ~N(QO,S, 2)

where y,, y,_, and €, are Kx1 dimensional vector and B, and ¥, are KxK dimensional matrices. vec(B,) and v, are K>x1 dimensional

vectors whereas S, is a K? x K> dimensional matrix. As the dynamic connectedness approach of Diebold and Yilmaz (2012, 2014)

rests on the Generalised Forecast Error Variance Decomposition (GFEVD) of Koop et al. (1996) and Pesaran and Shin (1998), it is

required to transform the TVP-VAR to its TVP-VMA representation by the Wold representation theorem: y, = Y'7° ) A, ;€,_; where
Ay =1Tg.

The H-step ahead GFEVD models the impact a shock in series j has on series i. This can be formulated as follows,

H-1,; 2
h=0 (eiAhrztej)

$E(H) = = 3)
e (€ 3e) Ty (€A S Ale,)
BE(H)
gSoT, “4)

it TGOK gen, g
Tie 9, ()

where e; is a K x 1 dimensional zero vector with unity on its ith position. As the ¢fje:‘(H) stands for the unscaled GFEVD

(Zj’;l {f;.‘f;’(H ) # 1), Diebold and Yilmaz (2009, 2012, 2014) suggested to normalise it by dividing ¢‘,?’;:'(H ) by the row sums to
obtain the scaled GFEVD, gSOT}; .

The scaled GFEVD is at the centre of the connectedness approach, facilitating the computation of the total directional
connectedness To (From) all series From (To) series i. While the To total directional connectedness constitutes the effect series i
has on all others, the From total directional connectedness illustrates the impact all series have on series i. These connectedness

measures can be calculated by,

K
Sf =Y, 8S0Ty, ©)
=T
K
S = Y, 8SOTy,. ©
=T

Computing the difference between the TO and the From total directional connectedness results in the net total directional
connectedness of series i:

gen,net _ qgen,to gen, from
Si,y = Siao,f - Sik',f . @
If Sff”‘"” >0 (Sf'f""’e’ < 0), series i is influencing (influenced by) all others more than being influenced by (influencing) them and
thus is considered to be a net transmitter (receiver) of shocks indicating that series i is driving (driven by) the network.
The connectedness approach also provides information on the bilateral level. The net pairwise directional connectedness shows
the bilateral net transmission of shocks between series i and j,

S§" = gSOT);, — gSOTy,. (8)

If Sfjft'"”e’ >0 (Sfj‘:t'""e' < 0), series i dominates (is dominated by) series j implying that series i influences (is influenced by) series j
more than being influenced by (influencing) it.

The total connectedness index (TCI) or total spillover index (TSI) is another relevant metric that highlights the degree of
network interconnectedness and, consequently, market risk. Considering that the TCI can be calculated as the average total
directional connectedness To (From) others, it is equal to the average amount of spillovers one series transmits (receives) from
all others. Chatziantoniou and Gabauer (2021) and Gabauer (2021) have shown that as the own variance shares are by construction
always larger or equal to all cross variance shares, the TCI is within [0, %] To obtain a TCI which is within [0,1], we have to
slightly adjust the TCIL:

K K
_ 1 gen,from _ 1 gen,to
gSol, = = Y sgenlron = L Z} S ©
i=

i=1

A high (low) value indicates high (low) market risk.

2 As the detailed algorithm is beyond the scope of this study, interested readers are referred to Antonakakis, Chatziantoniou, and Gabauer (2020b)
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Finally, we calculate the pairwise connectedness index (PCI), which can be seen as the TCI on the bilateral level, illustrating the
degree of interconnectedness between series i and j. This can be formulated as:

e s §SOT,;, + 85O,
A gSOT,;, +gSOT};, + gSOT}; , + §SOT};, ’

0< PCI;;, <. (10)

ijt =

4.2. Portfolio back-testing models

We utilise portfolio back-testing techniques to evaluate the investment performance of these assets, while also exploring any
potential hedging advantages. To examine the investment performance of the assets under examination, we use different measures
of constructing portfolios that have been traditionally used, as well as a new approach based on the results from our connectedness
technique. The underlying assumption of portfolio construction is that investors can buy assets directly and are willing to construct
a portfolio considering these markets: cryptocurrency, Fintech, tourism, and traditional financial sectors. This underscores the key
strength of the study, as it presents different assets from various markets, allowing investors to make efficient portfolio allocations
and diversifications. Therefore, this assumption is plausible, given that all cryptocurrencies and ETFs are easily available for investors
to purchase. Below, we provide a summary of the different techniques used.

4.2.1. Bilateral hedge ratios and portfolio weights
The dynamic hedge ratio of Kroner and Sultan (1993) can be formulated as follows,

Biji = Eij,t/Ejj,t’ 11

where 3;; ; is the conditional covariance between series i and j at time ¢, and X, , the conditional variance of series j at time 7.
Kroner and Ng (1998) shows that the optimal bilateral portfolio weights between series i and j are calculated as,

ziit - Eijt
w,;. . = > 2 s 12
v i 28, + X,
with
0, ifw;, <0
Wijr = Wijs if0< wi, <1 (13)
1, ifw;,>1

where w;;, is the weight of series i in a 1$ portfolio between series i and j at time 7. Thus, 1 —wy;, is the weight of series j at time
t in the aforementioned portfolio.

4.2.2. Minimum variance portfolio (MVP)
A commonly used approach in portfolio analysis is the MVP method, which attempts to create the portfolio with the least volatility
founded on multiple assets as documented by Markovitz (1959). The portfolio weights are estimated using the following formula:

=77
Iz

ws, 14)
where wy; denotes the K x 1 dimensional portfolio weight vector, I represents the K-dimensional vector of ones and X, depicts the
K x K dimensional conditional variance-covariance matrix in period ¢.

4.2.3. Minimum correlation portfolio (MCP)

In recent times, another procedure in the construction of portfolios has emerged, namely the MCP, introduced by Christoffersen
et al. (2014). This approach is similar to the MVP; however, in this case, the portfolio weights are obtained by minimising the
conditional correlations and not the conditional covariances. This can be outlined as follows,

R, =diag(32)™ " H,diag(=,)™%3 (15)
-1
wg = R T 16)
"OIRT

4.2.4. Minimum connectedness portfolio (MCoP)

Following the construction of the MVP and MCP portfolio techniques, we next generate MCoP by using the pairwise connect-
edness indices rather than the correlations or variances (Broadstock et al., 2020). The minimisation of bilateral interconnectedness
offers a portfolio procedure that is not affected heavily by network shocks. Thus, assets that are neither influencing nor influenced
by others are allocated a higher weight in the constructed portfolio. This is expressed as shown below:

PCI;'I
we, = ——— (17)
I1PCI; I

PCI, denotes the pairwise connectedness index matrix while the identity matrix is represented by I.



R.A. Dwumfour et al. International Review of Economics and Finance 106 (2026) 104845

4.2.5. Portfolio evaluation

To ascertain the performance of the portfolios, we rely on two metrics, the Sharpe ratio (Sharpe, 1994) and the hedging
effectiveness (Ederington, 1979).

On the one hand, the Sharpe ratio (SR), also called the reward-to-volatility ratio, is computed as follows:

"p
SR= —— (18)

yvar(r,)
Where r, represents the portfolio returns assuming that the risk-free rate is equal to zero. As higher SR values connote higher returns
relative to the level of risk in the portfolio, the SR allows us to compare various portfolios with each other as it informs us which
portfolio has the highest return given the same volatility:
The second metric is Hedging Effectiveness (HE), which informs us about the risk percentage reduction of the portfolio over
investing in a single asset i. We calculate the HE test statistics following (Antonakakis, Cufiado, et al., 2020a). The HE can be
computed by following the equations below:

rp = Xi = BjiXjs 19

Py = Wij Xy + (1- wijt) Xjt» (20)
Var (r

HE, =1 (rup) , (21)

Var (runhedged)

where Var (ryphedgea) denotes the variance of the unhedged position between variable i and j and Var (r,, ;) is the hedged portfolio
variance either from the optimal hedge ratio or the optimal portfolio weight strategy. Intuitively speaking, H E; represents the
percentage reduction in the variance of the unhedged position. The higher H E;, the larger the risk reduction.

Following from Antonakakis, Cufiado, et al. (2020a), we use the Brown and Forsythe (1974) test to estimate whether the variance
reduction using either the hedge ratios or portfolio weights is successful or not. Thus, we test whether the HE test is statistically
significant.

4.2.6. Statistical evaluation of performance measures

To determine whether there are statistically significant differences in portfolio performance across the Minimum Variance
Portfolio (MVP), Minimum Correlation Portfolio (MCP), and Minimum Connectedness Portfolio (MCoP), we employ two formal
hypothesis tests. First, the robust Diebold-Mariano (DM) test assesses whether differences in portfolio return dynamics reflect
unequal predictive accuracy. Second, the Jobson-Korkie (JK) test evaluates whether the Sharpe ratios of competing portfolios differ
significantly. A concise description of both tests follows.?

(i) Diebold-Mariano Test for Predictive Accuracy

The Diebold-Mariano (DM) test (Diebold & Mariano, 1995, 2002) evaluates whether two competing portfolio strategies exhibit
equal predictive accuracy. Let r , and r,, denote the returns of two portfolios. Following standard practice in the portfolio literature,
we define forecast errors as negative returns, e;, = —r; ,, and employ a squared-error loss function, L(e;,) = eiZJ. The loss differential
is then given by:

d; = L(e; ;) — L(eyy). (22)
The null hypothesis of equal predictive accuracy is:

Hy : E[d,]=0.

Let d = %ZL d, denote the sample mean loss differential. Because d, may exhibit serial correlation and conditional
heteroskedasticity, inference is conducted using the heteroskedasticity- and autocorrelation-consistent (HAC) variance estimator
proposed by Diebold and Mariano (1995). Specifically, the long-run variance of d, is estimated using a Newey—West estimator with
a Bartlett kernel:

h-1
0 . Ty,
5d—y0+2;(1 =) 7 23)
where 7, denotes the sample autocovariance of d, at lag r. The bandwidth & is selected using the standard Newey-West
data-dependent rule, ensuring robustness to weak serial dependence in daily returns.

The robust Diebold-Mariano statistic is given by:

DM = d

2 N, (24)
82/T

3 Additional methodological details are provided in Appendix A.1.
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under the null hypothesis. A statistically significant DM statistic indicates differential predictive performance between portfolio
strategies.

(ii) Jobson-Korkie Test for Sharpe Ratio Differences
The Jobson-Korkie test (Jobson & Korkie, 1981) evaluates whether the Sharpe ratios of two portfolios differ significantly. The
null hypothesis is:

Hy : SR, = SR,
where the Sharpe ratio is defined as SR = (u —r;)/o. Throughout the analysis, we assume a zero risk-free rate.
The test statistic is given by:

SR, — SR,
JK = , (25)

L 5, SR 2 SK
\/— <o'[. + - +6/. + T’ —2SR[SRI- COV(r[,rj)

T

which is asymptotically standard normal. The variance term explicitly accounts for contemporaneous correlation between portfolio
returns. Given the large sample size of daily observations, asymptotic inference is appropriate.

4.2.7. Downside risk measures: Sortino Ratio, Maximum Drawdown, and CVaR
While the Sharpe ratio evaluates risk-adjusted performance using total return volatility, it does not distinguish between upside
and downside risk. We therefore complement the analysis with three downside risk measures.
(i) Sortino Ratio. The Sortino ratio penalises only negative deviations from the target return:
R,—r¢
Sortino = -7, (26)

04

where R, denotes the mean portfolio return and o, is the downside deviation,

T
1 .
o=\ T Z{ min(r,, = ry,0)2. 27)
(ii) Maximum Drawdown (MDD). Maximum drawdown measures the largest peak-to-trough decline in cumulative portfolio
value:
max, . V., -V,
MDD = max <#> (28)
1€[0.T] max, o, V;

where V, denotes cumulative portfolio value.
(iii) Conditional Value-at-Risk (CVaR). Conditional Value-at-Risk (CVaR), or Expected Shortfall, captures the expected loss
conditional on returns falling below the a-quantile:

CVaR, =E[r,, | r,; < VaR,]|. (29)

Unlike VaR, CVaR accounts for the magnitude of extreme losses and is therefore a coherent measure of tail risk. Together, these
indicators provide a comprehensive assessment of downside risk and crisis vulnerability across portfolio strategies.

5. Results and discussions
Here, we discuss the results of the spillover analysis and the portfolio back-testing models.
5.1. Dynamic total connectedness

The dynamic total connectedness results can be shown in Fig. 2. We can see that the spillovers are heterogeneous over time.
The highest TSI was observed in the first quarter of 2020 when COVID-19 was declared a pandemic. This was close to 90% even
though the average TSI over the period is 75%, as shown in Table 2. Thus, it seems that during extreme periods, spillovers among
Fintech, cryptocurrency, tourism, and the traditional financial sector rise sharply and possibly attain a new peak.

5.2. Average dynamic connectedness

The average dynamic connectedness results, as presented in Tables 2 and 3, provide crucial insights into the interconnectedness
among the fintech, cryptocurrency, tourism, and traditional financial markets. In these tables, the ij' entry represents the
contribution To the forecast error variance of market i from shocks originating in market j. The diagonal elements (in bold) capture
the Own-variance shares of individual assets, while the off-diagonal column and row sums represent the To Others and From Others
spillovers, respectively. The Total Connectedness Index (TCI), derived as the gross sum of From spillovers as a percentage of total
variance (including Own variance), is reported as 75%, indicating a high level of interconnectedness and associated risk transmission
among the markets under study.

10
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Table 2

Average dynamic connectedness between tourism, fintech and crypto markets.

Variable GLOBALX ETF  AMPLIFY ETF  INVESCO FINTECH ETF  BTC ETH BNB FINANCIAL SELECT FUND ~ ISHARES USETF ~ SPDRETF  US.GLOBALJETSETF  ISHARESTRVLETF  INVESCOETF  FROM others
GLOBALX ETF 19.44 16.69 8.97 2.19 2.19 1.78 7.86 92.03 11.15 6.54 4.28 9.88 80.56
AMPLIFY ETF 15.22 17.63 8.82 1.7 1.73 1.44 9.56 2.98 11.36 7.41 4.72 10.42 82.37
INVESCO_FINTECH ETF 11.87 12.42 20.32 1.65 1.78 1.41 8.24 9.11 10.71 6.27 7.41 8.81 79.68

BTC 3.72 3.21 2.1 3772 2339 1639  2.05 2.59 3.07 1.75 1.61 2.4 62.28

ETH 3.71 3.22 2.23 2323  37.33  17.15 2.02 2.46 3 1.61 16 2.45 62.67

BNB 3.42 3.05 2.27 18.2 1915  41.97 178 2.14 2.67 1.46 1.74 2.14 58.03
FINANCIAL SELECT FUND  7.76 10.17 6.3 1.17 1.24 0.95 18.88 15.87 14.89 8.77 418 9.83 81.12
ISHARES_US_ETF 8.64 10.3 6.85 1.37 1.42 1.07 15.32 18.23 15.51 7.75 3.93 9.6 81.77

SPDR ETF 9.91 10.98 7.45 1.56 1.59 1.24 13.45 14.5 16.99 8.03 4.21 10.07 83.01
US_GLOBALJETS ETF 7.71 9.39 5.87 1.24 1.2 0.93 10.34 9.4 10.49 22.31 7.02 14.07 77.69
ISHARES_TRVL ETF 6.87 8.18 10.35 1.48 1.58 1.44 6.64 6.66 7.82 9.49 29.8 9.7 70.2
INVESCO_ETF 9.87 11.3 6.39 1.43 1.48 115 9.96 10.02 11.27 11.94 5.85 19.34 80.66
Spillovers TO Others 88.7 98.9 67.6 5521 5675  44.94  87.23 91.8 101.96 71.03 46.56 89.37 900.05
Spillovers Inc. Own 108.13 116.53 87.92 9293 9408  86.91 106.11 110.03 118.95 93.34 76.36 108.71

Net Spillovers/Spillback 8.13 16.53 -12.08 -7.07 -5.92 -13.09 6.11 10.03 18.95 ~6.66 —23.64 8.71 TCY/TSI = 75%

D 32 anofummd vy

SHSKOT (920Z) 90T 29UDUL] PUD SOUOUOIH JO MIIATY [DUOTDUIIUL



R.A. Dwumfour et al. International Review of Economics and Finance 106 (2026) 104845

85

2018 2020 2022 2024

Fig. 2. Dynamic total connectedness.
Note: Results are based on a TVP-VAR model with a lag length of order 1 (BIC) and a 10-step-ahead forecast.

Table 3

Summary of average aggregate net spillovers: market-to-market.
Variable Traditional financial market Fintech Tourism Cryptocurrency
Traditional financial market 54.1 -8.64 -16.27 -10.17
Fintech 8.64 57.39 -10.19 -11.06
Tourism 16.27 10.19 71.45 -4.83
Cryptocurrency 10.17 11.06 4.83 117.02
Net Aggregate Market spillover/spillback 35.08 12.61 -21.63 -26.06

Key findings emerge from these results. SPDR S&P Capital Markets ETF (SPDR_ETF), representing the traditional financial sector,
is identified as the most prominent net transmitter of spillovers, with a net spillover of 18.95%. This underscores the critical role
of the broader capital markets, encompassing commercial banks, investment banks, and asset management firms, in disseminating
risk. Amplify Digital Payments ETF (AMPLIFY_ETF), a fintech-focused ETF tracking mobile payment companies, ranks as the second-
highest transmitter. On the other hand, iShares DJSXX.600 Travel & Leisure ETF (ISHARES TRVL ETF), representing the tourism
sector, emerges as the most significant net receiver of spillovers, with a spillback of 23.64%. These results highlight the vulnerability
of the tourism sector to external shocks originating in other markets.

To provide a broader perspective, we aggregate spillovers across the four assets representing each market. Specifically, GLOB-
ALX ETF, AMPLIFY ETF, and INVESCO_FINTECH_ETF form the fintech sector; BTC, ETH, and BNB represent the cryptocurrency sector;
FINANCIAL SELECT FUND, ISHARES US_ETF, and SPDR_ETF constitute the traditional financial market; and US_ GLOBALJETS ETF,
INVESCO_ETF and ISHARES_TRVL _ETF, represent the tourism sector. Table 3 presents these aggregated spillover results, where
diagonal values represent the sum of Own variance shares and off-diagonal values denote the sum of net spillover or spillback
between markets. Notably, the traditional financial sector is the sole net transmitter to all other sectors, with the highest net spillover
of 16.27% directed toward the tourism market. This emphasises the dependence of the tourism sector on developments within
traditional financial markets.

These findings are consistent with prior literature. For instance, Khanna and Sharma (2023) and Katircioglu et al. (2017)
underscore the strong linkages between financial markets and the tourism industry, while De Vita and Kyaw (2016) highlight the
pivotal role of financial development in the tourism-growth nexus. The ability of the financial sector to provide credit and liquidity
for tourism businesses and individual travellers is well-documented (Xuan Luan et al., 2023). Our results reaffirm the dominance of
the traditional financial sector in shaping tourism market dynamics. The potential for cryptocurrencies to disrupt this dominance

12
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through decentralised finance (DeFi) solutions remains an open question, particularly in the context of peer-to-peer lending and
corporate financing.

Meanwhile, Fintech emerges as the second most significant transmitter of spillovers to the tourism sector, with a net spillover of
10.19%. This finding aligns with Yousaf and Goodell (2023), who emphasise the growing integration of fintech solutions in tourism
services. Conversely, the cryptocurrency market is predominantly a net receiver of spillovers from all other markets, especially from
the Fintech market, with an aggregate net spillback of 26%. This dependency on external market movements partially explains the
high volatility observed in cryptocurrency returns (Abad et al., 2022). Table 3 further reveals that the tourism market, with a net
spillback of 21.63%, remains highly vulnerable to spillovers, especially from the traditional financial sector, which dominates the
four markets with a net spillover contribution of 35%.

In summary, the results underscore the asymmetric nature of spillover dynamics among the four markets. While the traditional
financial sector remains the dominant transmitter of shocks, fintech plays an increasingly important role, particularly in its
interactions with the cryptocurrency sector. The cryptocurrency market, despite its innovation, continues to exhibit susceptibility to
shocks from more established markets. These findings provide critical insights for stakeholders seeking to understand cross-market
risk transmission and its implications for portfolio management and policy interventions.

5.3. Dynamic net total directional spillovers

Here, we discuss the dynamic net connectedness of each asset as shown in Fig. 3. The key observation of the dynamic results is
that it helps us to observe the net spillovers over time, giving particular insights into different times, especially during the COVID-
19 pandemic. From Fig. 3, values above the zero line indicate that the asset is a net transmitter of shocks, while values below
show the asset is a net receiver of shocks or spillovers. The results are generally consistent with the average net connectedness
results discussed earlier — the spillovers are heterogeneous over time. All the assets belonging to the traditional financial market
are generally net transmitters of spillovers over the study period, with minimal observed net spillbacks. Among the Fintech assets,
INVESCO_FINTECH_ETF receives the most spillbacks over time, contributing significantly to the aggregate net spillback of the sector,
as discussed earlier. Among the tourism assets, apart from IVESCO_ETF, the remaining assets are all net receivers of spillovers over
time. Also, all the cryptocurrency assets are net receivers of spillovers over time, with ETH showing some positive net contribution
of spillovers in late 2019.

5.4. Network analysis of spillovers

To further discuss the average pairwise spillovers between the variables, we present a network plot in Fig. 4. The network
plot shows the net directional spillovers between the pair of variables and the intensity of the net directional spillovers. From the
figure, the node’s size and colour represent that particular variable’s net spillover/spillback to all other variables; these represent
the values on the last row of Table 2. The colour scale ranges from the highest net receiver (red) to the highest net transmitter (blue)
of spillovers or shocks. Again, the direction of the arrows shows which of the pairs of variables is the net contributor or receiver
of spillovers, while the size of the line shows the intensity or degree of the net pairwise spillover. As noted earlier, we can see that
ISHARES_TRVL _ETF is the highest net receiver of spillover with the biggest node and deepest red, while SPDR ETF is the highest
net contributor of spillover in the system,m underscoring the critical role of the broader capital markets, encompassing commercial
banks, investment banks, and asset management firms, in disseminating risk.

5.5. Dynamic net pairwise directional spillovers

Due to the large net pairwise connectedness among all 12 assets, the results are presented in Appendix. We highlight some
key observations from these results. The net pairwise spillovers, as depicted in Figure A.1, provide valuable insights into the
interconnectedness among the individual assets from the Fintech, cryptocurrency, tourism, and traditional financial markets. Each
chart represents the directional spillovers from one asset to another, highlighting the temporal dynamics of risk transmission across
these sectors. The results are consistent with our earlier findings. First, the traditional financial sector emerges as the primary
transmitter of spillovers, underscoring its role in shaping risk transmission across sectors. Second, the cryptocurrency market
predominantly receives spillovers, reflecting its sensitivity to external shocks and its high return volatility. The tourism sector
remains highly susceptible to spillovers, particularly from the traditional financial sector, emphasising its reliance on external
financial conditions.

These findings underscore the asymmetric spillover dynamics among fintech, cryptocurrency, tourism, and traditional financial
markets. The dominance of traditional financial markets in risk transmission, combined with the vulnerability of the tourism
sector, underscores the need for strategic portfolio diversification and targeted policy interventions. Moreover, the interdependencies
between the Fintech and cryptocurrency sectors reveal opportunities for innovation and market integration. We therefore proceed
to discuss the results of the possible channels of transmission of these spillovers.
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Fig. 3. Dynamic net total directional connectedness.
Note: Results are based on a TVP-VAR model with lag length of order 1 (BIC) and a 10-step-ahead forecast.
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Fig. 4. Network spillover plot.
Note: Results are based on a TVP-VAR model with lag length of order 1 (BIC) and a 10-step-ahead forecast.

5.6. Economic channels of spillover transmission

The spillover dynamics observed across Fintech, tourism, and cryptocurrency sectors can be rationalised through several
economic channels. These channels explain how shocks in one sector propagate to others, influencing asset valuations, investor
behaviour, and market stability. By linking empirical findings to theoretical mechanisms, we address the interconnectedness
highlighted in the results, such as the dominance of traditional financial markets as net transmitters and tourism’s vulnerability
as a net receiver.

First, the dominance of traditional financial markets as net transmitters reflects credit supply constraints and funding dependen-
cies that propagate through financial intermediation chains. Traditional banks and financial institutions often face balance-sheet
constraints, such as limited capital or liquidity requirements, which can lead to tighter lending conditions. These constraints are
transmitted to Fintech valuations via sponsor or partner banks and acquirers, who provide essential funding and infrastructure. For
tourism firms, this manifests in restricted access to working-capital lines, fleet financing, or capital expenditures (capex) needed for
operations like hotel expansions or airline fleet renewals. Tighter financial conditions raise the external finance premium — the
additional cost of borrowing due to market imperfections — depressing cash-flow valuations in both tourism and Fintech sectors.
Additionally, shifts in the risk-bearing capacity of intermediaries, such as market dealers or ETF Authorised Participants (APs),
increase bid-ask spreads and price impact. This elevates cross-asset covariance and the total connectedness index (TCI), as observed
in our empirical results, where traditional finance contributes the highest net spillovers (35.08%, see Table 3).

Second, Fintech-driven liquidity and payment innovations amplify contagion via synchronised investor sentiment and technology-
linked exposure. Tourism revenues heavily depend on seamless checkout conversions, low cross-border fees, minimal chargeback
risks, and the availability of Buy Now, Pay Later (BNPL) or credit options supplied by Fintech platforms. Shocks to Fintech, such
as cyber events, system outages, or policy shifts on interchange fees and data privacy, directly impact tourism cash flows and
equity valuations. For example, a Fintech outage could disrupt payment processing for travel bookings, resulting in lost revenue for
tourism firms. Dynamic pricing algorithms, fraud detection models, and adtech budgets often co-move across integrated platforms,
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Table 4

Mean differences in Total Connectedness Index (TCI) across regimes.
Comparison Mean Difference t-statistic p-value Cohen’s d
COVID minus Pre-COVID 11.9376 65.160 0.0000 5.542
COVID minus Post-COVID 5.8939 28.885 0.0000 1.946
Post-COVID minus Pre-COVID 6.0437 43.852 0.0000 2.156

Notes: TCI denotes the Total Connectedness Index obtained from the TVP-VAR model. Regimes
are defined as Pre-COVID (up to 10 March 2020), COVID (11 March 2020-31 December 2020),
and Post-COVID (from 1 January 2021 onward). Mean differences are evaluated using Welch
unequal-variance r-tests. Cohen’s d reports standardised effect sizes.

synchronising demand fluctuations and investor reactions. Consequently, Fintech acts as a secondary transmitter to tourism; pairwise
connectedness intensifies around events like payment policy changes or outages, aligning with our aggregate net spillover from
Fintech to tourism of 10.19%.

Third, tourism-driven spillovers could emerge through demand and revenue shocks. Travel restrictions, rising fuel costs, or
geopolitical events can alter cash flows in airlines and hospitality sectors, impacting collateral values and loan covenants. Lenders
and payment processors (often Fintech-integrated) then adjust credit limits or pricing, feeding back into the broader financial system.
For instance, a decline in tourism revenues might lead to higher default risks on loans, prompting banks to tighten credit supply
economy-wide. Hence, tourism is typically a net recipient but can also transmit during large real-sector shocks, such as pandemics
or fuel price spikes, consistent with the heightened spillovers observed during COVID-19 in our dynamic analysis.

Fourth, the limited hedging capacity of cryptocurrencies (as we provide more empirical evidence in subsequent sections) could
be attributable to asymmetric volatility, speculative behaviour, and weak safe-haven demand, especially during high-uncertainty
periods. Cryptocurrencies exhibit high, state-dependent volatility, where price swings are amplified in downward markets due to
asymmetric leverage effects—investors facing margin calls or liquidations exacerbate sell-offs. Leverage and margin constraints in
derivatives markets, combined with basis risk (dislocations between spot and futures prices), undermine their reliability as hedges.
Moreover, depeg episodes in stablecoins or constraints in banking rails (e.g., restrictions on fiat-to-crypto conversions) feed back
into processor and merchant settlements, affecting the reliability of tourism checkout. Hence, crypto is predominantly a net receiver
in normal times; during risk-on episodes, it can temporarily transmit wealth effects or sentiment channels to Fintech, as evidenced
by our findings, which show that cryptocurrencies receive net spillovers of —26.06% aggregately.

Fifth is crisis amplification and regime dependence spillover channels. In periods of stress, such as the COVID-19 pandemic,
risk tolerance decreases, and margins increase; de-risking behaviours elevate cross-hedging correlations (often approaching one),
weakening hedge ratios and increasing portfolio tail risk. This amplification is evident in our results, where the total spillover index
peaked near 90% in early 2020, reflecting synchronised market reactions across sectors.

Together, these mechanisms suggest that shocks in credit and liquidity conditions transmit rapidly across digital and real
sectors, producing the high time-varying connectedness observed empirically. Understanding these channels provides investors and
policymakers with tools to mitigate risks, such as through diversified portfolios or regulatory oversight of integrated Fintech-tourism
systems.

5.6.1. External validation of connectedness dynamics

This section provides quantitative evidence linking the Total Connectedness Index (TCI) to observable measures of financial stress,
credit conditions, and tourism-related economic activity. The objective is to assess whether the time variation and regime shifts
in connectedness documented earlier correspond to economically meaningful changes in external conditions, particularly during
periods of heightened uncertainty such as the COVID-19 pandemic. The results are presented in Tables 4 to 6.

The TCI is computed from the baseline TVP-VAR specification and summarises the aggregate strength of cross-market spillovers
across tourism, cryptocurrency, Fintech, and traditional financial markets. To proxy financial market uncertainty, we employ the
CBOE Volatility Index (VIX), obtained from the Chicago Board Options Exchange, which captures forward-looking equity market
risk. Credit conditions are measured using the ICE BofA U.S. High Yield Option-Adjusted Spread (OAS), sourced from the Federal
Reserve of St. Louis (I.C.E. Data Indices, LLC, 2025), which reflects economy-wide funding stress and shifts in risk premia faced by
non-investment-grade borrowers.

Tourism activity is proxied using mobility indicators constructed from Google’s Global Mobility Reports (Google LLC, 2025).
Specifically, we extract daily percentage deviations from baseline for mobility related to retail and recreation, transit stations, and
workplaces, and aggregate these into a tourism-relevant activity index. We use U.S. data as the proxy for tourism activity. Higher
(lower) values indicate stronger (weaker) tourism-related activity relative to the pre-pandemic baseline.

Regime differences in connectedness. Table 4 reports mean differences in TCI across Pre-COVID, COVID, and Post-COVID regimes
using Welch tests, alongside effect sizes. The results indicate pronounced and statistically significant increases in connectedness
during the COVID period, relative to both the pre-COVID and post-COVID regimes. Importantly, post-COVID connectedness remains
significantly elevated compared to pre-COVID levels, suggesting a persistent upward shift in cross-market spillovers even after the
initial crisis phase. The large Cohen’s d values confirm that these differences are economically meaningful rather than driven solely
by sampling variation.
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Table 5

Period summary: TCI and external indicators.
Period N Mean TCI SD TCI Mean VIX Mean HY OAS Mean Tourism
Pre-COVID 608 70.358 1.822 17.407 3.853 3.147
COVID 212 82.296 2.441 26.267 5.915 —27.986
Post-COVID 916 76.401 3.521 19.585 3.872 -15.415

Notes: TCI is the Total Connectedness Index from the TVP-VAR model. VIX denotes the CBOE Volatility Index
(Chicago Board Options Exchange). HY OAS is the ICE BofA U.S. High Yield Option-Adjusted Spread, capturing
economy-wide credit stress. Tourism activity is proxied by a composite U.S. tourism mobility index constructed
from Google Global Mobility Reports, averaging retail and recreation, transit stations, and workplace mobility.

Table 6

Correlations between TCI and external indicators.
Indicator N Correlation p-value
VIX 1714 0.379 0.000
HY OAS 1736 0.698 0.000
Tourism (U.S.) 1145 —-0.340 0.000

Notes: Reported values are Pearson correlations computed in levels. TCI is the Total Connectedness
Index. VIX proxies market uncertainty, while HY OAS captures credit market stress. Tourism
mobility indices are derived from the Google Global Mobility Reports. The U.S. index is used
in the period summaries. Negative correlations indicate higher connectedness during periods of
tourism contraction.

Period summaries and external conditions. Table 5 summarises average TCI levels alongside VIX, high-yield credit spreads, and U.S.
tourism mobility across regimes. The COVID period is characterised by the highest average connectedness, coinciding with elevated
market volatility, wider credit spreads, and sharply depressed tourism activity. Pre-COVID observations exhibit the lowest TCI and
comparatively benign financial conditions, while Post-COVID values lie between the two, indicating partial normalisation. The
alignment of TCI with both financial stress indicators and real-sector tourism activity provides descriptive evidence in support of
the proposed transmission channels.

Correlation evidence. Table 6 presents Pearson correlations between TCI and external indicators in levels. TCI is positively correlated
with VIX and high-yield OAS, indicating that higher market uncertainty and tighter credit conditions are associated with stronger
spillover intensity. In contrast, TCI is negatively correlated with the U.S. tourism mobility measures, implying that contractions in
tourism-related activity coincide with increased interconnectedness across markets. These correlations are statistically significant
and consistent with the view that financial stress and real-sector disruptions jointly amplify spillover dynamics.

Regression results: drivers of total connectedness. To empirically link the dynamics of the TCI to observable economic conditions, we
estimate a set of time-series regressions relating TCI to market uncertainty, credit conditions, and tourism activity. We estimate
two complementary specifications: (i) a levels specification capturing long-run associations and (ii) a crisis-interaction specifica-
tion allowing relationships to differ during the COVID-19 period. Each specification is estimated separately using Newey-West
heteroskedasticity- and autocorrelation-consistent standard errors.

The regression results are reported in Table 7, with coefficients interpreted as marginal effects on aggregate spillovers. The
regression results provide quantitative support for the economic channels underlying the observed spillover dynamics. Across all
specifications, credit market stress emerges as the most robust determinant of total connectedness. In the levels specification,
wider credit spreads are associated with significantly higher TCI, indicating that tighter financial conditions amplify cross-market
spillovers. This effect strengthens markedly during the COVID-19 period. This finding is consistent with the interpretation that
deteriorating credit conditions amplify cross-market spillovers by tightening funding constraints and increasing balance-sheet
interdependencies.

In contrast, market uncertainty measured by the VIX and tourism mobility do not exert statistically significant effects in normal
times, suggesting that short-run fluctuations in risk sentiment and tourism activity are not sufficient, on their own, to alter aggregate
connectedness outside crisis periods

The COVID interaction specification (Panel B) reveals substantial regime shifts. The COVID dummy enters with a large and
highly significant positive coefficient, confirming that total connectedness rose sharply during the pandemic. More importantly, the
interaction terms show that the transmission mechanisms operating during COVID differ markedly from those prevailing in normal
periods. The interaction between credit spreads and COVID is negative and significant, implying that although credit stress remains
a key driver of connectedness, its marginal impact was partially attenuated during the crisis—consistent with policy interventions
that stabilised credit markets despite elevated spreads.

Tourism activity exhibits pronounced regime dependence. Outside the pandemic, while its level effect is weak in tranquil periods,
during COVID, however, the positive and highly significant interaction term implies a reversal: declines in tourism mobility became
an important amplifier of connectedness. This pattern reflects the role of tourism as a real-sector shock transmission channel during
the pandemic, where collapses in travel demand propagated stress across financial, Fintech, and cryptocurrency markets.

Finally, the interaction between VIX and the COVID dummy is positive and marginally significant, suggesting that uncertainty
shocks became more potent in driving connectedness during the crisis, even though their effects are muted in normal times.
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Table 7
HAC regressions linking total connectedness to Financial Stress and Tourism Activity.
Specification Variable Coefficient Std. Error HAC -Stat NW Lag
Panel A: Levels Specification
Intercept - 64.799%** 0.877 73.93 6
Market Uncertainty VIX 0.036 0.029 1.25 6
Credit Stress HY OAS 2.976%** 0.247 12.04 6
Tourism Activity Tourism Mobility 0.045 0.035 1.29 6
Panel B: COVID Interaction Specification
Intercept - 57.818%*** 0.781 74.01 6
Market Uncertainty VIX —0.052 0.032 -1.60 6
Credit Stress HY OAS 4.759%** 0.216 22.08 6
Tourism Activity Tourism Mobility —-0.070* 0.038 -1.87 6
COVID Dummy COVID 16.598%** 1.127 14.73 6
VIX x COVID Interaction 0.056* 0.033 1.71 6
Credit Spread x COVID Interaction —3.174%** 0.244 -13.01 6
Tourism Mobility x COVID Interaction 0.128%*** 0.037 3.46 6

Notes: The dependent variable is the Total Connectedness Index (TCI). Market Uncertainty is measured by the CBOE Volatility
Index (VIX). Credit Stress is the ICE BofA U.S. High Yield Option-Adjusted Spread (OAS). Tourism Mobility is constructed from
Google Mobility indicators capturing tourism-related activity. COVID equals one from 11 March 2020 onward. All models are
estimated separately using Newey-West HAC standard errors with a Bartlett kernel. NW Lag reports the Newey-West bandwidth.
Statistical significance: *** p < 0.01, ** p < 0.05, * p <0.10.

Taken together, the results confirm that total connectedness is primarily driven by credit conditions, with uncertainty and tourism
activity becoming economically and statistically relevant during crisis periods. These findings provide an explicit empirical linkage
between the theoretical spillover mechanisms and the observed dynamics of the connectedness index.

5.7. Hedging and portfolio analysis

5.7.1. Bilateral hedge ratios and portfolio weights

We proceed to discuss the results of our portfolio analysis. We first provide a discussion of the summary statistics of the bilateral
hedge ratios and the hedging effectiveness (HE). The bilateral hedge ratios reported in Table A.1, Appendix, provide critical insights
into the effectiveness of hedging strategies across different asset pairs. The hedge ratios’ mean values reflect the average relationship
between the returns of the hedged and hedging instruments. From the table, a $1 long position in the first asset can be hedged
with the average value of the hedge ratio of a short position in the second asset. For instance, asset pairs such as GLOBALX ETF
— AMPLIFY ETF with a mean hedge ratio of $1.061 exhibit strong positive co-movement. This means that every $1 long position
in GLOBALX ETF can be hedged for $1.061 investment in AMPLIFY ETF. This would be an expensive hedge and is not surprising
given that both asset classes are in the Fintech sector; hence, it may not be a good hedge. Hence, from the table, the cheapest
hedge for GLOBALX ETF is the cryptocurrency assets, ranging from $0.120 for BNB to $0.155 for BTC. This is consistent for all the
other Fintech and other asset classes, with crypto assets providing the cheapest hedge for all other assets. BNB broadly provided
the cheapest hedge for these assets, followed by ETH.

We also observe that it is expensive to use asset classes within the same sector as a hedge for the other. This highlights the
importance of asset-specific characteristics and their relationships when selecting hedging instruments. Moreover, we do see that
it is expensive to hedge Fintech assets with assets in the traditional financial sector. For instance, hedging a $1 long position in
LOBALX ETF will require at least $0.754 from the traditional financial sector. This shows the high positive co-movement between
the two sectors. Meanwhile, we can observe that the cheapest source of hedge for the cryptocurrency market is the Tourism sector,
while the Fintech and traditional financial sectors provide an expensive hedge. For instance, hedging a $1 long position in BTC will
require at least $0.526 (GLOBALX ETF) and $0.463 from the Fintech and traditional financial sectors, respectively. Meanwhile, a
minimum of $0.296 (US_GLOBALJETS_ETF) from the tourism sector can be used to hedge the BTC. These results are similar for all
crypto assets.

The standard deviations also provide additional insights into the variability of hedge ratios. Pairs with higher standard deviations,
such as BNB — INVESCO_ETF (0.986), suggest greater uncertainty in the stability of their hedging relationships, potentially
complicating consistent risk management. In contrast, pairs using cryptocurrencies as a hedge generally show low standard
deviations. For instance, the pair of INVESCO_FINTECH ETF — BNB exhibit the lowest variability of 0.063, indicating stable and
reliable hedging relationships. These values indicate that hedge ratios are not constant over time. This is confirmed by the results in
Fig. 5, Fig. 6 and Fig. 7, which show the time-varying nature of the optimal dynamic hedge ratios. From the figures, we see observable
peaks in the hedge ratios during the COVID-19 pandemic. Investors should, therefore, be mindful to adjust their portfolios with time.

Alternatively, the optimal portfolio weights can be used as a diversification strategy. These results are summarised in Table A.2.
The results show the dynamic optimal portfolio weights for two-asset portfolios. The mean weight reflects the dollar cents that need
to be invested in the first asset in any $1 portfolio. The results are generally consistent with the conclusions from the dynamic hedge
ratios. Here also, we see that all the cryptocurrency assets, especially ETH, in the bilateral portfolios have higher mean weights with
associated good stability or low risk (standard deviation). For instance, in the SPDR_ ETF-ETH portfolio, $0.03 needs to be invested
in SPDR ETF while $0.97 needs to be invested in ETH, also given by the mean of ETH-SPDR ETF. This asset pair also has the most
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Fig. 5. Dynamic hedge ratios (Part 1).

Note: The blue continuous line represents the dynamic optimal bilateral hedge ratio between the first (long) and second assets (short), while the
red broken lines represent the reverse order of the two assets. The grey-shaded area is the first year when COVID-19 was declared a pandemic
(2020-03-11 to 2020-12-31).
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Fig. 6. Dynamic hedge ratios (Part 2).
Note: The blue continuous line represents the dynamic optimal bilateral hedge ratio between the first (long) and second assets (short), while the

red broken lines represent the reverse order of the two assets. The grey-shaded area is the first year when COVID-19 was declared a pandemic
(2020-03-11 to 2020-12-31).
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Fig. 7. Dynamic hedge ratios (Part 3).

Note: The blue continuous line represents the dynamic optimal bilateral hedge ratio between the first (long) and second assets (short), while the
red broken lines represent the reverse order of the two assets. The grey-shaded area is the first year when COVID-19 was declared a pandemic
(2020-03-11 to 2020-12-31).

stable portfolio weights (standard deviation = 0.032). The portfolio weights of crypto and other asset pairs generally exhibit the
lowest risk, with lower standard deviations.

Also, the results generally show that between Fintech and traditional financial sector portfolios, higher weights should be given
to Fintech assets. Similarly, higher weight should be given to tourism assets in tourism-traditional financial sector portfolios.
Meanwhile, for tourism-fintech portfolios, the asset shares are heterogeneous, with some pairs assuming a higher weight for tourism
while others assume a higher weight for Fintech. Generally, the most unstable portfolio weights are between assets of the same sector,
especially between assets of the traditional financial sector. Similar to the dynamic hedge ratios, these results suggest the dynamic
nature of portfolio weight over time, as shown in Figs. 8-10. From these figures, we also see observable peaks during the COVID-19
pandemic.

5.7.2. Hedging effectiveness and statistical significance

The hedging effectiveness (HE) values quantify the risk reduction achieved through hedging strategies. These are shown in both
Tables A.1 and A.2. Higher, positive and statistically significant HE values, such as for GLOBALX_ETF — ISHARES TRVL ETF (0.193,
p = 0.000) and ISHARES TRVL ETF — SPDR ETF (0.213, p = 0.002) from Table A.1, indicate meaningful risk mitigation opportunities
for these pairs. On the other hand, negative and highly significant HE values for cryptocurrency-related pairs, such as GLOBALX ETF
— ETH (-5.918, p = 0.000) and GLOBALX ETF — BNB (-6.821, p = 0.000) from Table A.1, reveal substantial inefficiencies in risk
reduction. Surprisingly, we observe that several of the HEs for asset pairs where cryptocurrency assets are used as a hedge were
negative and mostly statistically significant. These results are consistent with those of the bilateral portfolio weights in Table A.2.
From Table A.1, the highest positive and statistically significant HE was between ETH and US GLOBALJETS_ETF (0.324, p = 0.000).
BTC is the only other crypto pairing with US_ GLOBALJETS ETF (HE = 0.210, p = 0.000). These results are consistent with those of
the bilateral portfolio weights shown in Table A.2.

These results may highlight the challenges of using cryptocurrency-based assets as reliable hedging instruments, even though
they were the cheapest hedge for most assets. The ineffectiveness of cryptocurrencies as a hedge may be due to their high volatility
and idiosyncratic risk. Overall, the results emphasise the asymmetric hedging potential across markets. While traditional financial
and tourism-related ETFs emerge as reliable hedging options, cryptocurrency assets demonstrate significant challenges in their
application for risk management.

5.7.3. Cumulative profits of diversification strategies

Again, of interest to investors will be to assess the cumulative profitability of the various diversification strategies discussed
earlier. We use the dynamic optimal hedge ratios and portfolio weights over time to construct the portfolios.* As robustness checks,
we also include the cumulative profits based on an equality-weighted portfolio and the buy-and-hold (unhedged) strategy. We also
construct a portfolio with constant median hedge ratios and portfolio weights. These results are presented in Fig. 11, Fig. 12, and
Fig. 13, and Table 8. From Fig. 11, the results are generally heterogeneous depending on the asset allocation strategy and portfolio
composition. Generally, there is an upward trend of profits in all the types of strategies except for some asset pairs (excluding
crypto assets as long positions) when using the hedge ratios strategy. We generally observe that portfolios with crypto assets in
long positions using the hedge ratios have the most profit, mostly after the first year of the COVID-19 pandemic. For instance, in

4 The results for the dynamic cumulative portfolio returns based on the constant median of hedge ratios and portfolio weights are presented in the Appendix
in Figure A.3.
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Fig. 8. Dynamic portfolio weights (Part 1).
Note: The blue continuous line represents the dynamic portfolio weights between the first and second assets, while the red broken lines represent
the reverse order of the two assets. The grey-shaded area is the first year when COVID-19 was declared a pandemic (2020-03-11 to 2020-12-31).
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Fig. 9. Dynamic portfolio weights (Part 2).
Note: The blue continuous line represents the dynamic portfolio weights between the first and second assets, while the red broken lines represent
the reverse order of the two assets. The grey-shaded area is the first year when COVID-19 was declared a pandemic (2020-03-11 to 2020-12-31).
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Fig. 10. Dynamic portfolio weights (Part 3).
The blue continuous line represents the dynamic portfolio weights between the first and second assets, while the red broken lines represent the
reverse order of the two assets. The grey-shaded area is the first year when COVID-19 was declared a pandemic (2020-03-11 to 2020-12-31).

the graph of AMPLIFY ETF — BNB, taking BNB as the long position has cumulative profits ending at almost 500% using the hedge
ratios. Notably, most of the portfolios with tourism ETFs in long positions recorded the highest drops and losses during the COVID-19
pandemic and ended the period with the least (most) cumulative profits (losses) using the hedge ratios strategy. Similarly, portfolios
with tourism ETFs in the portfolio weight strategies also saw some of the lowest cumulative profits.

These results are confirmed by the summary in Table 8. We see that, on average, except for the 50/50 allocation strategy, the
portfolio weights have the highest cumulative profits, with the median strategy ending with an average of about 100% followed by
the dynamic weighting recording 92% average cumulative returns. This is followed by the unhedged strategy (84%) and then the
dynamic hedge ratios strategy (Assetl-Asset2 80%). This is consistent with Antonakakis, Cufiado, et al. (2020a), who also found
that the dynamic portfolio weights and unhedged strategies outperform the hedge ratios strategy. Meanwhile, as observed earlier,
all the portfolios with cryptocurrency recorded positive and the highest cumulative returns in all strategies, except in some dynamic
hedge ratios portfolios where crypto is in a short position. We generally see lower portfolio returns between asset pairs from the
same market. Under the unhedged strategy, the tourism ETFs recorded the least portfolio returns, with all of them recording losses.

5.8. Multivariate portfolio analysis

We also construct a multivariate investment portfolio based on the minimum variance portfolio (MVP), minimum correlation
portfolio (MCP) and minimum connectedness portfolio (MCoP). Each of these strategies has its key advantage. MVP seeks to
construct the portfolio through the minimisation of portfolio volatility, while MCP seeks to minimise the correlations across the
assets. Meanwhile, MCoP is constructed on the basis of minimising the pairwise connectedness or bilateral spillovers between pairs
of assets.

These results, along with the hedging effectiveness (HE), are presented in Table 9 and Fig. 14. From Table 9, we observe some
similarities as well as differences in the portfolio allocation. For instance, both the MVP and MCP strategies assigned the highest
portfolio mean weight to the FINANCIAL SELECT FUND (MVP: 21.9%, MCP: 15%). This is consistent with our earlier results that
showed the dominance of the traditional financial sector in the transmission of spillovers. What is rather surprising is that the MCP
assigned the least weight to SPDR_ETF (0.7%), which contributed the largest spillovers in the system. This may be because the
asset correlates highly with other assets in the system. The MVP strategy, however, assigned US_ GLOBALJETS ETF (0.1%) the least
weight.

Meanwhile, for the MCoP strategy, the highest allocation went to three assets: FINANCIAL SELECT FUND, ETH, and INVESCO_ETF
— with a portfolio allocation of 8.6% each. From the table, we can see that while the MVP and MCP strategies have relatively large
differences in the portfolio allocation of the assets, the MCoP strategy has marginal differences in the portfolio weights of all assets.
The HEs for all assets under the three strategies show high hedging effectiveness and are significant. Investing in either of the
portfolio strategies with the mean weights will reduce the volatility of each asset, ranging from 95% (INVESCO_ETF) to as high as
100% for BTC, BNB and US_GLOBALJETS ETF, all in the MVP strategy (see Figs. 12 and 13).

5.8.1. Results of statistical evaluation of portfolio performance

To rigorously assess the profitability and robustness of the MVP, MCP, and MCoP strategies, we evaluate their performance
along two complementary dimensions: risk-adjusted returns and statistical significance of performance differences using the
Diebold-Mariano and Jobson-Korkie tests (see Table 10).

The Diebold-Mariano test confirms that differences in cumulative return predictability are statistically insignificant across all
strategies and across all market regimes, as all DM statistics are small in magnitude and associated p-values exceed conventional
significance thresholds. Hence, none of the portfolios demonstrate superior forecasting accuracy in terms of return dynamics.
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Fig. 11. Cumulative profits of diversification strategies (Part 1).
Note: The grey-shaded area is the first year when COVID-19 was declared a pandemic (2020-03-11 to 2020-12-31)
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Fig. 12. Cumulative profits of diversification strategies (Part 2).
Note: The grey-shaded area is the first year when COVID-19 was declared a pandemic (2020-03-11 to 2020-12-31).
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Fig. 13. Cumulative profits of diversification strategies (Part 3).
Note: The grey-shaded area is the first year when COVID-19 was declared a pandemic (2020-03-11 to 2020-12-31).
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Fig. 14. Plot of the cumulative sum of portfolio returns.
Note: MCoP: minimum connectedness portfolio; MVP: minimum variance portfolio; and MCP: minimum correlation portfolio. The grey-shaded
area is the first year when COVID-19 was declared a pandemic (2020-03-11 to 2020-12-31).

In contrast, the Jobson-Korkie test provides strong statistical evidence of differences in risk-adjusted performance. Across the
full sample and in each subperiod, MVP exhibits significantly lower Sharpe ratios than both MCP and MCoP (p < 0.01). During
the COVID-19 period, although risk increased substantially, the statistical dominance of MCP and MCoP over MVP persists. The
comparison between MCP and MCoP is generally statistically insignificant pre-COVID and during COVID, but becomes strongly
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Table 8
Summary of cumulative profits from diversification strategies.

Asset Pair Dynamic hedge ratios Median hedge ratios Portfolio weight Buy and hold

(Assetl-Asset2) (Asset2-Assetl) (Assetl-Asset2) (Asset2-Assetl) Dynamic Median 50/50 Allocation Unhedged

GLOBALX ETF - AMPLIFY_ETF —6% -1% -18% 17% —5% 6% 14% 6%
GLOBALX ETF — INVESCO_FINTECH_ETF -16% 25% -39% 50% 0% 12% 29% 6%
GLOBALX ETF - BTC 18% 234% -15% 167% 150% 159% 89% 6%
GLOBALX ETF - ETH 15% 184% -3% 93% 87% 96% 52% 6%
GLOBALX ETF — BNB 6% 477% -27% 376% 360% 365% 193% 6%
GLOBALX_ETF — FINANCIAL_SELECT_FUND —8% -3% -21% 31% —27% 11% 20% 6%
GLOBALX _ETF - ISHARES_US_ETF -30% 22% —43% 55% -1% 16% 32% 6%
GLOBALX_ETF — SPDR_ETF —44% 36% —54% 58% -12% 8% 34% 6%
GLOBALX _ETF - US_GLOBALJETS_ETF 44% —94% 36% —58% —-60% -27% —24% 6%
GLOBALX ETF — ISHARES_TRVL_ETF 11% -27% 13% -15% -22% 0% —4% 6%
GLOBALX_ETF — INVESCO_ETF 25% -32% 8% —6% —26% 5% 2% 6%
AMPLIFY ETF — INVESCO_FINTECH_ETF -8% 27% -18% 40% 24% 31% 37% 22%
AMPLIFY_ETF — BTC 32% 227% 6% 156% 155% 163% 97% 22%
AMPLIFY ETF - ETH 28% 180% 15% 79% 86% 97% 60% 22%
AMPLIFY ETF - BNB 21% 458% —5% 363% 365% 371% 201% 22%
AMPLIFY_ETF — FINANCIAL_SELECT_FUND -3% -1% —6% 21% 8% 25% 28% 22%
AMPLIFY ETF - ISHARES_US_ETF —25% 25% —26% 45% 27% 31% 40% 22%
AMPLIFY_ETF - SPDR_ETF -37% 34% -32% 46% 22% 30% 42% 22%
AMPLIFY_ETF — US_GLOBALJETS_ETF 51% -101% 49% -71% —40% -35% -16% 22%
AMPLIFY_ETF - ISHARES_TRVL_ETF 26% —22% 28% —23% 7% 6% 4% 22%
AMPLIFY_ETF - INVESCO_ETF 27% -29% 24% -17% 5% 16% 10% 22%
INVESCO_FINTECH_ETF — BTC 65% 213% 43% 150% 142% 166% 112% 52%
INVESCO_FINTECH_ETF - ETH 51% 172% 48% 70% 83% 97% 75% 52%
INVESCO_FINTECH_ETF — BNB 55% 428% 34% 346% 359% 375% 216% 52%
INVESCO_FINTECH_ETF — FINANCIAL_SELECT FUND 28% 1% 35% 8% 42% 43% 43% 52%
INVESCO_FINTECH_ETF — ISHARES_US_ETF 13% 26% 20% 29% 60% 56% 55% 52%
INVESCO_FINTECH_ETF — SPDR_ETF 2% 28% 17% 29% 58% 57% 57% 52%
INVESCO_FINTECH_ETF — US_GLOBALJETS_ETF 52% -107% 68% —87% -35% -29% 1% 52%
INVESCO_FINTECH_ETF — ISHARES_TRVL_ETF 40% —34% 60% —47% 13% 17% 20% 52%
INVESCO_FINTECH_ETF — INVESCO_ETF 37% -38% 54% -29% 20% 25% 25% 52%
BTC - ETH 107% -57% 107% —80% 159% 98% 135% 171%
BTC - BNB 52% 324% —46% 229% 391% 352%  276% 171%
BTC — FINANCIAL_SELECT_FUND 181% 41% 155% 26% 141% 165% 102% 171%
BTC — ISHARES_US_ETF 154% 62% 141% 48% 148% 166% 115% 171%
BTC - SPDR_ETF 143% 73% 134% 48% 149% 167% 116% 171%
BTC - US_GLOBALJETS_ETF 218% —40% 189% —-67% 116% 145%  59% 171%
BTC - ISHARES_TRVL_ETF 211% 8% 175% -18% 131% 158%  79% 171%
BTC — INVESCO_ETF 209% 4% 173% -12% 148% 162% 84% 171%
ETH - BNB —52% 363% -197% 310% 309% 233%  239% 98%
ETH - FINANCIAL_SELECT_FUND 157% 37% 76% 30% 73% 97% 66% 98%
ETH - ISHARES_US_ETF 105% 60% 59% 53% 81% 97% 78% 98%
ETH - SPDR_ETF 91% 67% 48% 55% 83% 98% 80% 98%
ETH - US_GLOBALJETS_ETF 183% -50% 118% -59% 39% 88% 22% 98%
ETH - ISHARES_TRVL_ETF 178% -5% 103% -15% 70% 94% 43% 98%
ETH - INVESCO_ETF 187% -3% 100% -7% 74% 96% 48% 98%
BNB - FINANCIAL_SELECT_FUND 379% 32% 357% 22% 355% 373%  207% 380%
BNB - ISHARES_US_ETF 329% 56% 340% 38% 357% 374% 219% 380%
BNB - SPDR_ETF 311% 65% 333% 39% 360% 374% 221% 380%
BNB - US_GLOBALJETS_ETF 437% -56% 399% -73% 332% 349% 163% 380%
BNB - ISHARES_TRVL_ETF 455% —8% 386% —24% 350% 367% 184% 380%
BNB - INVESCO_ETF 460% —2% 382% -20% 353% 371% 189% 380%
FINANCIAL_SELECT_FUND - ISHARES_US_ETF -21% 22% -18% 27% 38% 49% 46% 33%
FINANCIAL_SELECT FUND - SPDR_ETF —25% 32% -17% 30% 42% 54% 47% 33%
FINANCIAL_SELECT_FUND - US_GLOBALJETS ETF  54% -105% 58% -87% —49% -53% -10% 33%
FINANCIAL_SELECT_FUND - ISHARES_TRVL_ETF 34% —28% 38% -30% 4% 3% 10% 33%

(continued on next page)

significant post-COVID (p < 0.01), favouring MCoP. Over the full sample, the MCP-MCoP difference is marginally significant at the
10% level (p = 0.0668), suggesting a slight advantage of MCoP in long-run risk-return efficiency.

Overall, while all three portfolio strategies display statistically similar return predictability, portfolios that minimise correlations
(MCP) or connectedness (MCoP) consistently deliver superior risk-adjusted outcomes relative to the traditional minimum-variance
approach. MCoP provides the most favourable performance, particularly in the long run and in the post-pandemic recovery phase.
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Table 8 (continued).

Asset Pair Dynamic hedge ratios Median hedge ratios Portfolio weight Buy and hold

(Asset1-Asset2) (Asset2-Assetl) (Asset1-Asset2) (Asset2-Assetl) Dynamic Median 50/50 Allocation Unhedged

FINANCIAL_SELECT FUND - INVESCO_ETF  24% —36% 35% —28% 6% 11% 15% 33%
ISHARES_US_ETF - SPDR_ETF -3% 8% 4% 6% 61% 60% 60% 58%
ISHARES_US_ETF - US_GLOBALJETS_ETF 80% -128% 82% -107% —43% —-47% 2% 58%
ISHARES_US_ETF — ISHARES_TRVL_ETF 62% —45% 63% —41% 16% 15% 23% 58%
ISHARES_US_ETF — INVESCO_ETF 52% —55% 60% —45% 15% 20% 28% 58%
SPDR_ETF — US_GLOBALJETS_ETF 86% -128% 88% -110% —45% —-45% 4% 61%
SPDR_ETF - ISHARES_TRVL_ETF 61% —49% 67% —45% 17% 19% 24% 61%
SPDR_ETF — INVESCO_ETF 60% -61% 63% —48% 17% 25% 29% 61%
US_GLOBALJETS_ETF — ISHARES_ TRVL_ETF —-55% 17% —46% 9% —-41% —44%  —34% —54%
US_GLOBALJETS_ETF — INVESCO_ETF -56% 44% -51% 27% —42% -54%  -29% -54%
ISHARES_TRVL_ETF — INVESCO_ETF -12% 3% -11% 3% -7% —8% —-8% -13%
Average 80% 42% 64% 30% 92% 100%  68% 84%

Note: The buy and hold unhedged strategy is for Asset 1.

Table 9
Multivariate portfolio weights.

Variable Minimum Variance Portfolio (MVP)

Mean Std. Dev. 5% 95% HE P-value
GLOBALX_ETF 0.063 0.102 0.000 0.303 0.000
AMPLIFY ETF 0.069 0.093 0.000 0.252 0.000
INVESCO_FINTECH_ETF 0.142 0.102 0.000 0.348 0.000
BTC 0.039 0.041 0.000 0.116 0.000
ETH 0.006 0.012 0.000 0.027 0.000
BNB 0.014 0.023 0.000 0.068 0.000
FINANCIAL_SELECT_FUND 0.219 0.177 0.000 0.547 0.000
ISHARES_US ETF 0.100 0.123 0.000 0.328 0.000
SPDR_ETF 0.040 0.080 0.000 0.231 0.000
US_GLOBALJETS_ETF 0.001 0.007 0.000 0.005 0.000
ISHARES_TRVL_ETF 0.112 0.096 0.000 0.293 0.000
INVESCO_ETF 0.196 0.128 0.000 0.415 0.950%** 0.000
Variable Minimum Correlation Portfolio (MCP)

Mean Std. Dev. 5% 95% HE P-value
GLOBALX ETF 0.134 0.136 0.000 0.383 0.967%** 0.000
AMPLIFY_ETF 0.041 0.073 0.000 0.204 0.983*** 0.000
INVESCO_FINTECH_ETF 0.081 0.058 0.000 0.183 0.990* 0.000
BTC 0.097 0.071 0.000 0.227 0.984*** 0.000
ETH 0.063 0.065 0.000 0.185 0.994%** 0.000
BNB 0.092 0.062 0.003 0.226 0.000
FINANCIAL_SELECT_FUND 0.150 0.110 0.000 0.323 0.000
ISHARES_US_ETF 0.097 0.107 0.000 0.304 0.000
SPDR_ETF 0.007 0.021 0.000 0.050 0.000
US_GLOBALJETS_ETF 0.083 0.064 0.000 0.194 0.000
ISHARES_TRVL_ETF 0.099 0.051 0.020 0.186 0.9971%** 0.000
INVESCO_ETF 0.057 0.052 0.000 0.151 0.997%** 0.000
Variable Minimum Connectedness Portfolio (MCoP)

Mean Std. Dev. 5% 95% HE P-value
GLOBALX _ETF 0.083 0.083 0.000 0.200 0.987*** 0.000
AMPLIFY_ETF 0.085 0.091 0.000 0.200 0.984%** 0.000
INVESCO_FINTECH_ETF 0.081 0.085 0.000 0.200 0.000
BTC 0.083 0.084 0.000 0.200 0.000
ETH 0.086 0.091 0.000 0.200 0.000
BNB 0.083 0.082 0.000 0.200 0.000
FINANCIAL_SELECT_FUND 0.086 0.085 0.000 0.200 0.000
ISHARES_US ETF 0.081 0.086 0.000 0.200 0.000
SPDR_ETF 0.082 0.086 0.000 0.200 0.000
US_GLOBALJETS_ETF 0.085 0.085 0.000 0.200 0.000
ISHARES_TRVL _ETF 0.079 0.082 0.000 0.200 0.000
INVESCO_ETF 0.086 0.088 0.000 0.200 0.986%** 0.000

5.8.2. Downside risk and crisis performance of portfolio strategies

Table 11 reports the Sharpe ratio, Sortino ratio, Maximum Drawdown (MDD), and Conditional Value-at-Risk at 5% (CVaRy o5)
for the Minimum Variance Portfolio (MVP), Minimum Correlation Portfolio (MCP), and Minimum Connectedness Portfolio (MCoP)
across the full sample, and the pre-COVID, COVID, and post-COVID periods.
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Table 10

Diebold—Mariano and Jobson—Korkie Test results by period.
Period Comparison DM Stat DM p-value JK Stat JK p-value
Full Sample MVP vs MCP 0.2904 0.7715 -14.7263 0.0000
Full Sample MVP vs MCoP 0.3095 0.7569 —16.1686 0.0000
Full Sample MCP vs MCoP 0.2613 0.7938 —1.8332 0.0668
Pre-COVID MVP vs MCP 0.2238 0.8229 —26.1527 0.0000
Pre-COVID MVP vs MCoP 0.1927 0.8472 —23.5864 0.0000
Pre-COVID MCP vs MCoP 0.0248 0.9802 1.5220 0.1280
COVID MVP vs MCP 0.3631 0.7165 -3.7317 0.0002
COVID MVP vs MCoP 0.3024 0.7623 —2.8676 0.0041
COVID MCP vs MCoP 0.0113 0.9910 0.8400 0.4009
Post-COVID MVP vs MCP 0.1554 0.8765 —6.2324 0.0000
Post-COVID MVP vs MCoP 0.2406 0.8099 -12.2343 0.0000
Post-COVID MCP vs MCoP 0.4472 0.6547 —6.0031 0.0000

Table 11

Downside risk metrics by portfolio and period.
Period Portfolio Sharpe Sortino Max Drawdown CVaR (5%)
Full Sample MVP 0.0216 0.0199 —0.4631 —-0.0316
Full Sample MCP 0.0347 0.0313 -0.5311 —0.0466
Full Sample MCoP 0.0367 0.0335 —0.5882 —-0.0507
Pre-COVID MVP —0.0028 —0.0023 —0.2458 —-0.0247
Pre-COVID MCP 0.0251 0.0226 —0.4462 —0.0416
Pre-COVID MCoP 0.0229 0.0208 —0.5220 —-0.0474
COVID MVP 0.0606 0.0563 —0.2745 —-0.0611
COVID MCP 0.0813 0.0655 —0.3122 —0.0747
COVID MCoP 0.0762 0.0634 —0.3209 —-0.0786
Post-COVID MVP 0.0185 0.0177 —0.3597 —-0.0269
Post-COVID MCP 0.0248 0.0234 —-0.5311 —-0.0424
Post-COVID MCoP 0.0325 0.0311 —0.5358 —0.0455

Full sample performance. Over the entire period, both MCP and MCoP outperform MVP in terms of risk-adjusted returns. MCoP
achieves the highest Sharpe ratio (0.0367) and Sortino ratio (0.0335), followed closely by MCP (Sharpe = 0.0347). MVP delivers
the lowest performance (Sharpe = 0.0216). However, this higher return comes at the cost of deeper losses during market stress —
MCoP exhibits the largest maximum drawdown (-58.82%) and worst tail losses (CVaR = —5.07%), followed by MCP. This suggests
that reducing variance alone (MVP) yields stability, but accounting for cross-market spillovers enhances returns at the cost of higher
downside exposure.

Pre-COVID period. Before the pandemic, MVP shows slightly negative Sharpe and Sortino ratios, indicating poor performance even
after accounting for volatility and downside risk. MCP and MCoP generate positive Sharpe ratios of 0.0251 and 0.0229, respectively,
confirming superior risk-adjusted returns. Nonetheless, both MCP and MCoP suffer larger drawdowns (up to —52.20%), while MVP
is comparatively more stable (MDD = —24.58%). Thus, prior to systemic stress, connectedness- and correlation-based allocations
improve performance but increase vulnerability to deep portfolio losses.

During COVID-19. The COVID-19 crisis reverses this risk-return trade-off. All strategies improve in terms of Sharpe and Sortino
ratios, reflecting heightened return volatility and subsequent recovery. MCP delivers the strongest performance (Sharpe = 0.0813),
followed by MCoP (0.0762) and MVP (0.0606). At the same time, maximum drawdowns remain severe but relatively similar across
strategies (—27% to —32%), while tail losses intensify substantially — CVaR ranges from —6.11% (MVP) to —7.86% (MCoP). This
indicates that, during extreme market turmoil, portfolios exploiting diversification through correlation or connectedness achieve
higher returns, despite experiencing deeper losses in the worst cases.

Post-COVID recovery. Following the pandemic, all portfolios stabilise. MCoP maintains the highest Sharpe ratio (0.0325), followed
by MCP (0.0248) and MVP (0.0185). However, both MCP and MCoP continue to exhibit higher maximum drawdowns (—53%),
whereas MVP remains more conservative (MDD = —35.97%). Tail-risk (CVaR) is also lowest for MVP (-2.69%), implying better
downside protection but at the expense of lower returns.

Across all periods, MVP offers the lowest returns but also the most controlled downside risk. MCP and MCoP consistently generate
higher Sharpe and Sortino ratios, particularly during crisis and recovery phases, but are more exposed to extreme losses and deeper
drawdowns. MCoP is marginally more profitable than MCP, but also carries slightly higher tail-risk, reflecting its sensitivity to
spillover dynamics.

Overall, correlation- and connectedness-based allocation (MCP and MCoP) enhance performance relative to variance-based
allocation (MVP), especially during periods of high uncertainty. However, this comes at the cost of higher exposure to extreme
downside events.
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6. Conclusion and policy implications

This study provides new evidence on the dynamic spillover structure between tourism, Fintech, cryptocurrency, and traditional
financial markets, emphasising how these interdependencies evolve across tranquil and turbulent periods such as the COVID-19
crisis. Traditional financial markets consistently emerge as the dominant net transmitters of shocks, reinforcing their systemic role
in propagating risks to emerging digital and tourism-based assets. Conversely, cryptocurrencies behave largely as net receivers of
spillovers and exhibit limited effectiveness as hedging instruments, while tourism assets — despite their higher volatility — serve
as comparatively stronger hedges.

Portfolio analysis reveals that incorporating cross-market connectedness into optimisation significantly improves performance
relative to conventional variance- or correlation-based approaches. The Minimum Connectedness Portfolio (MCoP) consistently
delivers higher risk-adjusted returns, particularly during crisis periods, even though it is more exposed to tail risks and drawdowns.
In contrast, the Minimum Variance Portfolio (MVP) provides the most stable downside protection but offers inferior returns.

The statistical evaluation confirms these insights. Across the full and sub-sample periods, the Diebold-Mariano test suggests no
significant differences in return predictability between MVP, MCP, and MCoP, implying that no strategy systematically outperforms
in terms of forecasting accuracy. However, the Jobson-Korkie test indicates that MVP delivers significantly lower Sharpe ratios
than MCP and MCoP, especially during COVID-19 and post-crisis periods. The difference between MCP and MCoP is generally
insignificant or marginal, suggesting comparable efficiency, though MCoP has a marginal advantage. Downside risk metrics reinforce
this asymmetry: MCP and MCoP yield higher returns but experience deeper drawdowns and more severe tail losses, while MVP
remains more conservative.

These findings carry important policy and investment implications. For investors, they demonstrate that accounting for cross-
market connectedness — rather than solely minimising variance — can yield superior returns, particularly in high-uncertainty
environments. However, this comes at the cost of greater exposure to extreme losses, necessitating active risk management.
Policymakers and financial regulators should recognise that spillovers between traditional and alternative markets amplify systemic
risks, especially during crises. Stronger regulatory oversight and transparency in emerging markets, such as cryptocurrency and
Fintech, are essential to mitigating instability.

Overall, this study concludes that while return predictability does not differ statistically across portfolio strategies, risk-adjusted
performance and downside resilience vary markedly. Integrating connectedness into portfolio construction offers meaningful
benefits, underscoring the importance of network-based risk management in an increasingly interconnected global financial system.
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